
Regularized Classification-Aware Quantization
Daniel Severo

Electrical and Computer Engineering
University of Toronto

Toronto, Canada
d.severo@mail.utoronto.ca

Elad Domanovitz
Electrical and Computer Engineering

University of Toronto
Toronto, Canada

elad.domanovitz@utoronto.ca

Ashish Khisti
Electrical and Computer Engineering

University of Toronto
Toronto, Canada

akhisti@ece.utoronto.ca

Abstract—Traditionally, quantization is designed to minimize
the reconstruction error of a data source. When considering
downstream classification tasks, other measures of distortion can
be of interest; such as the 0-1 classification loss. Furthermore, it is
desirable that the performance of these quantizers not deteriorate
once they are deployed into production, as relearning the scheme
online is not always possible. In this work, we present a class of
algorithms that learn distributed quantization schemes for binary
classification tasks. Our method performs well on unseen data,
and is faster than previous methods proportional to a quadratic
term of the dataset size. It works by regularizing the 0-1 loss with
the reconstruction error. We present experiments on synthetic
mixture and bivariate Gaussian data and compare training,
testing, and generalization errors with a family of benchmark
quantization schemes from the literature. Our method is called
Regularized Classification-Aware Quantization.

Index Terms—distributed quantization; generalization; regu-
larization; classification

I. INTRODUCTION

As the worldwide estimate of active edge devices surpasses
tens of billions, reducing data storage and transmission costs
becomes vital. When dealing with continuous data, most
pipelines include quantization, where the data is discretized
in some way. Traditionally, quantization is designed to mini-
mize the reconstruction error with respect to some notion of
distortion; such as the Mean Squared Error (MSE).

Despite small reconstruction error being an intuitive goal,
it might not be the optimal measure when considering down-
stream tasks such as binary classification [6]. For example,
there is no need to store data with high precision if it will be
thresholded afterwards for decision making. Quantizing near
the threshold value will suffice.

Following [6], we assume the fusion center has access to
a pre-trained classifier and it wishes to apply it over data
features collected at d distributed sensor nodes. The focus of
our work is on designing distributed quantizers to be used for
classification. Thus, our goal is not to improve the performance
of the classifier, but rather, to find a good quantization scheme
that would result in minimal performance degradation when
used in conjunction with the pre-trained classifier.

The assumption of a pre-trained classifier can be motivated
by considering a two phase approach in systems design. When
training the classifier, data is sent at high resolution over rate
constrained channels, i.e. several channel-uses can be used to

This work was funded by Huawei

send a single sample. After, real-time decisions are required
and the data has to be quantized to meet these constraints.

In practical settings, quantization schemes must be learned
from a finite set of data points, as the true data generating
distribution is not known. In production systems, re-learning
with incoming data can be cumbersome, or even impossible,
as this would require bidirectional communication between
the decoder and encoders to agree on a new code-book.
It is therefore desirable for the performance of a learned
quantization scheme to not deteriorate once applied to new, but
similar, data. This begets the question: how well do learned
quantization schemes generalize to out-of-sample data?

In this work we propose a quantization scheme called
Regularized Classification-Aware Quantization (RCAQ) that is
learned from data. Experiments show that RCAQ generalizes
with few training examples on synthetic Gaussian data. We
evaluate RCAQ, and previous work by [6] called on-the-
line, on both in-sample (training) and out-of-sample (testing)
datasets to estimate generalization. Results indicate that both
methods have comparable performance. However, RCAQ has
significantly lower computational complexity, as it does not
require iterating twice over the dataset as in on-the-line. All
code is available at https://github.com/dsevero/rcaq.

II. PROBLEM FORMULATION

This work focuses on a distributed setting, where d encoders
must quantize and transmit data to a single decoder tasked with
performing linear binary classification. Learning is done with
complete information, i.e. the decoder and encoders can com-
municate to decide on a code-book. Once deployed, encoders
do not coordinate with each other and communication with
the decoder is unidirectional. Data points are in Rd, but each
encoder has access only to one dimension in R. Quantization
indices are transmitted losslessly over a noiseless channel. The
classifier is considered to be given, i.e. pre-trained.

Our goal is not to improve the classifier, but to learn a
quantization scheme at the encoders that will minimize the
additional classification error introduced by quantization. The
quantization error is measured by comparing the output of the
classifier with and without quantization. Note that, in some
sense, the classifier is our ground truth.

We extend the formulation of [10], by emphasizing general-
ization performance. Let x = (x1, . . . , xd) ∈ Rd represent a d-
dimensional datapoint and y(x) ∈ {−1,+1} the label assigned

ar
X

iv
:2

10
7.

09
71

6v
1

 [
cs

.L
G

]
 1

2
Ju

l 2
02

1

https://github.com/dsevero/rcaq

0 1 0 1 0 1 0 1 0

Fig. 1. Example of overfitting inspired by [6]. Only one encoder is needed.
For points x in the blue region, E1(x) = y(x) = 1. Similarly, for those in
the red regions, E1(x) = y(x) = 0. This scheme achieves zero classification
error on the training set.

by the pre-trained classifier without quantization. The k-th
encoder must learn a quantization function Ek : R → [2Rk],
where Rk is the rate and [2Rk] = {1, 2, . . . , 2Rk} are the
set of integer quantization indices. The decoder receives an
integer d-tuple E(x) = (E1(x1), . . . , Ed(xd)) and must output
a classification ŷ(E(x)) ∈ {−1,+1}.

Remark 1: Note that, unlike traditional quantization, there
is no need for reconstruction points as the decoder can directly
map the quantization integers to a class label.

If x ∼ P is the true data generating distribution, the
objective is to solve the following optimization problem:

minimize
E,ŷ

E[1[ŷ(E(x)) 6= y(x)]]

subject to R1, . . . , Rd and P,
(1)

where the expectation is taken over x ∼ P , and 1 the indicator
function.

The objective function in equation (1) is known as the 0-1
loss, and differs from [6] only in the choice of P . Here, P
is the (unknown) data generating distribution, while [6] uses
the empirical distribution of a set of points T = {x(i)}Ni=1

sampled i.i.d. from P (i.e. they optimize the training loss).
In practice, only T is available, not P . Therefore, we mini-

mize a regularized estimator of equation (1) by partitioning T
into training, validation, and test sets. Quantization is learned
on the training set, while performance is evaluated on the test
set. The validation set is used to tune the number of bins,
as discussed in section V. Note that it is always possible to
achieve zero training error by setting E1(x) = y(x). This is
shown in Figure 1. Clearly, this scheme overfits.

Throughout this work, we assume that the classifier avail-
able at the decoder performs binary linear classification. For-
mally, a weight vector w = (w1, . . . , wd) ∈ Rd is available
such that the class label is assigned as ŷ(x) = sign(〈w,x〉).
We assume w is a 45 degree hyperplane (i.e. −w1 = w2 =
· · · = wd = 1), as the training and test sets can always be
re-scaled accordingly.

III. RELATED WORK

Previous work has investigated distributed quantization
schemes for both classification [6] and traditional settings
[13]. More recently, [6] introduced the family of on-the-
line quantizers for linear binary classification in R2, which
uses the same encoder for both dimensions. The core of
the algorithm works by noting that there is a finite set of
boundaries that affect the quantization error for a fixed training
set of size N ; which are the 2N coordinates of the data
points. A greedy optimization strategy is given that finds an
optimal solution to problem (1), under the constraint that
E1 = E2 and P is the empirical distribution of the training
set. It works by exhaustively searching the set of potential
boundaries and keeping those which minimize the loss. To
avoid overfitting, the authors impose continuity conditions
on the quantization regions. The computational complexity is
shown to be O(N22R), where R = R1 = R2 is the rate.

This configuration can be viewed as related to distributed es-
timation and detection with communication-constrained links.
See, [2], [9] and references therein. In [8], scalar quantization
was studied. Many of these works assume that the sensor
measurements are independently distributed given the detec-
tion hypothesis. Further, it is assumed that these conditional
distributions are known. In our framework neither this condi-
tional independence nor the knowledge of these distributions
is assumed.

Several recent works focused on distributed probability esti-
mation, property testing and simulation [5], [3], [1]. However,
these works assume that each node observes all features while
we focus on the case where each node observes a single
feature.

Applying the pre-trained classifier over the quantized fea-
tures can be viewed as functional compression problem. Dis-
tributed compression for functional computation with distor-
tion has been studied (for example) in [12], [4]. Extending
the ideas of [6] our suggested algorithm performs quantiza-
tion for unknown source distribution and without any apriori
knowledge of the classifier function.

IV. BACKGROUND

A. Distributed Lloyd-Max
Vanilla non-distributed Lloyd-Max [7] is an iterative al-

gorithm that computes optimal quantization boundaries and
reconstruction points with respect to a loss function. It requires
knowledge of the data distribution, but can be used with a
training set by considering its empirical distribution. It alter-
nates between two optimization steps. First, given an initial
set of reconstruction points, it computes the bins by assigning
each data point to the reconstruction point that minimizes
the loss (bin step). Then, using the newly computed bins, it
updates the reconstruction points to those which minimize the
expected loss for each bin (reconstruction step). This method
is known to converge to a local minimum of the loss. A good
minima can be found by running the algorithm on random
initialisations. Note that binning happens at the encoder, and
reconstruction at the decoder.

In [10], a distributed version of Lloyd-Max is introduced.
They provide conditions under which the loss function con-
verges to a local minimum. The algorithm is similar to vanilla
non-distributed Lloyd-Max, in the sense that it also alternates
between two steps. However, to account for the distributed
nature of the problem, it performs the bin step locally at
each encoder while holding all other encoders fixed. The
reconstruction step follows as in the non-distributed setting,
since it happens at the decoder side.

B. Generalization and Regularization

In our context, a learning algorithm A is a function that
receives a training set of i.i.d points T = {x(i)}Ni=1 ∼ PN

and outputs a distributed quantization scheme A(T) = (E ,D),
where E = (E1, . . . , Ed) are the encoders and D the decoder. A
loss function L, such as the reconstruction or 0-1 loss, is used
to quantify the performance. Given a fresh sample T ′ ∼ PN ,
we define two important quantities,

Training error L(A(T), T)
Test error L(A(T), T ′). (2)

Note that in both cases A is trained on the training set
T , what differs is on which dataset the loss is evaluated.
An algorithm is said to generalize well if both quantities are
always similar in value.

When the training error is low and testing error is high, we
say that the algorithm has overfitted. This can happen when
A(T) has enough complexity that it outputs a quantization
scheme which memorizes the training set (see Figure 1) [11].
Regularization can be seen as a way to reduce overfitting in A
by augmenting the loss function such that it penalizes highly
complex quantization schemes [11].

In many practical cases, part of the training set T is held-
out (i.e. not used during training) and is used to tune hy-
perparameters [11]. This third dataset is called the validation
set TV . Confusingly, the remaining dataset TT = T \ TV is
also called the training set. Hyperparameters, in our context,
can be understood as any parameter that is not optimized
during training. Thus, the train/test paradigm is augmented to
train/validate/test. Multiple quantizers, with different hyperpa-
rameter values, are trained on TT , and the one which performs
best on TV is chosen. Test loss is evaluated on T ′, as before.
This setting is employed in RCAQ, and is discussed in section
V.

V. METHODS

Our algorithm is a direct application of distributed Lloyd-
max presented in [10] and discussed in subsection IV-A. As the
name entails, RCAQ works by regularizing the loss function
with a term that penalizes bad reconstruction. The intuition
stems from viewing this as a continuity condition in the
data space. Points that are close together should tend to be
quantized similarly. For this to be possible, we must add an
extra step in the decoding process that maps the quantization
indices E(x) to a reconstruction point D(E(x)) = x̂ ∈ Rd

before the classification function ŷ is applied; as in traditional
quantization.

A. Algorithm

RCAQ is a two-stage quantizer. Encoders perform binning
before quantization. Formally, each encoder has a binning
function Bi : R → R that maps the data points to evenly
spaced bins. The bin centres are then quantized with Ei
before being sent to the decoder. The functions {Bi}di=1 are
not optimized during training. Instead, an exhaustive search
is performed over the number of bins during the validation
phase discussed in sub-section IV-B. Thus, each encoder is
represented by the pair (Bi, Ei), and the decoder by (D, ŷ). A
diagram is shown in Figure 2.

x1

x2

B1

B2

E1

E2

i1

i2

c1

c2
D x̂

ŷ

Fig. 2. RCAQ high level diagram. Data point x = (x1, x2) is mapped
to bin centres (c1, c2), and then to integer quantization indices (i1, i2) ∈
[2R1] × [2R2]. The decoder deterministically selects a reconstruction point
x̂, and applies the classifier ŷ.

Our loss function is

LT (E ,D, ŷ) =
1

N

∑
x∈T

(
γ1[ŷ(x̂) 6= y(x)] + (1− γ) ‖x̂− x‖2

)
(3)

where T is the training set, N = |T | the training set size,
0 ≤ γ ≤ 1 controls the strength of regularization, ‖x̂− x‖2
is the reconstruction penalty, and 1 the indicator function. For
γ = 1, L becomes the 0-1 loss, while for γ = 0 it is the
original Lloyd-max distortion term (i.e. MSE).

A small number of bins acts as a second regularizer, as it
precludes the encoder from having highly discontinuous quan-
tization regions. Larger values for b increase the resolution at
the encoder, making it possible to have discontinuous regions
and therefore less distortion. However, in our experiments
we found that the algorithm sometimes opts for discontinuity
even for a relatively small b ≈ 16. The pseudo-code for the
optimization algorithm is presented and discussed next.

B. Optimizing the encoder

Algorithm 1 assumes equal rates and number of bins in
all dimensions, but this can be trivially extended. The inner
optimization loop updates Ei by exhaustively searching which
integer should be mapped to each bin. The overall computa-
tional complexity, if implemented naively, isO(Id∑bmax

b=1 2Rb)
where R is the rate, b the number of bins, and I is the
number of iterations to convergence. However, it is possible
to parallelize over the bins by noting that the integer assigned
to bin i will not affect the loss incurred at bins j 6= i. In other
words, the bins are independent during optimization. The outer
validation loop can also be done in parallel. Also, we found
that convergence is fast and does not depend significantly on

Fig. 3. Quantization bins for on-the-line (left, orange) and RCAQ (right, blue) for both training (50 points) and test sets (10, 000 points). Class labels are
represented by the color of each point (green or grey). Training loss for on-the-line and RCAQ are 0 and 0.02, respectively; while testing loss is 0.08 and
0.05. Reconstruction points are shown as triangles with their respective class labels corresponding to their colors. The number of bins for RCAQ is 10, and
the integer quantization index for each bin is shown in blue for each encoder. On-the-line does not use reconstruction points, as it assigns class labels to each
quantization cell directly.

Algorithm 1: Reg. Classification-Aware Quantization

Given rate R and training set T ;
Partition T into TT and validation set TV ;
Consider Ri = R and bi = b for all i ∈ {1, . . . , d};
for number of bins b ∈ {1, 2, . . . , bmax} do

Initialize encoders {(Bi, Ei)}di=1;
Initialize decoder (D, ŷ);
while LTT (E ,D, ŷ) has not converged do

for i ∈ {1, . . . , d} do
Ei ← argmin

Ei
LTT (E ,D, ŷ);

end
(D, ŷ)← arg min

(D,ŷ)
LTT (E ,D, ŷ);

end
Evaluate 0-1 loss on validation set TV ;

end
Output codec that achieved lowest 0-1 loss on TV ;

other quantities, and hence I is fixed in our experiments. In
practice, this reduces the complexity to

O
(
d2R

)
. (4)

When compared to the family of on-the-line quantizers (d =
2), there is a reduction in complexity of O(N2). The order in
which the encoders are optimized matters, as the optimization
step for encoder Ek uses the previous, and already optimized,
encoders {Ei}k−1i=1 . Therefore, it is not possible to parallelize
over the inner optimization loop, unless we relax the algorithm
and optimize subsets of {E1, . . . , Ed} simultaneously. We do
not investigate this latter scenario in this work.

C. Optimizing the decoder

Optimizing the decoder (D, ŷ) consists of updating the
reconstruction point function D as in regular Lloyd-max, but
with the loss function defined in equation (3). The classi-
fication function ŷ is simply the classifier itself. Note that,
during minimization, the 0-1 loss component will only be

affected if the reconstruction point is pushed to the other side
of the decision boundary. This implies that the loss function
(3) is discontinuous with respect to the reconstruction point.
Surprisingly, this does not add complexity to the minimization
process, as there are only two possible updates for any
reconstruction point. Either x̂ is updated to the average of the
data-points assigned to it (i.e. as in vanilla Lloyd-max, which
considers only MSE), or, if∑

x∈TT (x̂)

γ1[ŷ(x̂′) 6= y(x)] >
∑

x∈TT (x̂)

(1− γ) ‖x̂′ − x‖2 , (5)

x̂ must be pushed to the other side of the boundary; where
TT (x̂) is the set of training points that are currently assigned
to reconstruction point x̂. Intuitively, this must be done in
a way such that the increase in MSE is minimal. It is easy
to show that the optimal pushing direction is exactly that of
the normal vector defining the hyperplane, i.e. a straight line
to the boundary. Therefore, the update procedure for a single
reconstruction point x̂ is

argmin
x̂′∈{x̂,x̂+∆}

∑
x∈TT (x̂)

(
γ1[ŷ(x̂′) 6= y(x)] + (1− γ) ‖x̂′ − x‖2

)
,

(6)
where ∆ ∝ w is the vector such that x̂ + ∆ crosses the
boundary by some small additive constant (we used 10−6).

VI. EXPERIMENTS

We asses the generalization performance of RCAQ and on-
the-line quantizers with bivariate and mixture Gaussian data;
as a function of both rate and correlation. Experiments were
run for 1 ≤ d ≤ 5 to confirm that the number of iterations to
convergence I does not scale significantly with d. However,
experiments shown here are limited to d = 2, as on-the-
line is defined only in this setting. Artificial margins are
created at the separation hyperplane (i.e. classifier) by adding
a small perturbation in the direction of the normal vector (see
Figure 3 for a visual). Intuitively, since there are less points
concentrating around the decision boundary, larger margins
should result in better generalization performance [11]. Indeed,

0 0.2 0.4 0.6 0.8 1
0

0.05

0.1

0.15

0.2

0.25

0.3
0

-1
 lo

s
s

o
n

 t
h

e
 t

e
st

 s
e

t
On the line, training set size=300

RCAQ, training set size=50, validation set size=250

Fig. 4. 0-1 loss (lower is better) for on-the-line (blue) and RCAQ (orange)
quantizers. Test set of size 10, 000 was used. Results are shown as a function
of the correlation coefficient for a bivariate Gaussian distribution.

this was observed experimentally for both RCAQ and on-the-
line.

Empirically, we found that RCAQ is not sensitive to γ,
which serves mostly to equalize the scales of the 0-1 and
reconstruction losses. In all experiments, γ = 0.95.

In the following sections, we detail the experimental setup.
The experiments presented are a subset of the totality per-
formed, and were chosen for being good representatives of
the overall performance of both RCAQ and on-the-line.

A. Bivariate Gaussians

Bivariate Gaussians with zero mean, equal variances and
correlation coefficient ρ were used, resulting in the following
covariance matrix

Σ =

(
1 ρ
ρ 1

)
. (7)

We generated 6 training sets with correlation coefficient ρ ∈
{0, 0.2, 0.4, 0.6, 0.8, 1.0} and training set size N = 300. Both
on-the-line and RCAQ where trained on all 6 and performance
was measured on 6 different test sets, each of size 10, 000,
with the same values of ρ as the training sets. The rate was
fixed at 2R1 = 2R2 = 6 integers per encoder (i.e. dimension)
everywhere. The 0-1 loss for the test set is shown in Figure 4
for both methods. For RCAQ, the train/validation split is set
to 50/250.

Our experiments indicate that RCAQ is, at the very least,
competitive with on-the-line; but with a reduction in com-
plexity of O(N2). As ρ increases, the loss increases in
general, as more points concentrate along the decision plane
making it harder to quantize. The effect of the margin is the
opposite, increasing it pushes points away from the boundary,
making quantization easier. This is true for both encoders, as
previously mentioned.

In Figure 3, we provide the quantization regions and indices
for on-the-line and RCAQ for ρ = 0.4 and N = 50. Note that
on-the-line does not use reconstruction points, as the quan-
tization cells are assigned a class label directly. RCAQ uses

1.5 2 2.5 3 3.5

R

0.04

0.05

0.06

0.07

0.08

0.09

0.1

0.11

0
-1

 lo
s
s

o
n

 t
h

e
 t

e
st

 s
e

t

On the line, training set size=1000

RCAQ, training set size=300, validation set size=700

Fig. 5. 0-1 loss (lower is better) for on-the-line (blue) and RCAQ (orange)
quantizers. Test set of size 10, 000 was used. Results are shown as a function
of the rates R1 = R2 = R (i.e. 2R bins at each encoder) for a Gaussian
mixture distribution.

reconstruction points, and chooses the class label by placing
the reconstruction points below or above the hyperplane. The
quantization cells for on-the-line that contain the hyperplane
are always squares. To see this, note that the hyperplane
is a 45 degree line and serves as the diagonal of the cell.
RCAQ does not have this restriction, allowing those cells to be
rectangles. This improves the generalization error, as the cells
that intersect the hyperplane are the ones that can potentially
misclassify points. In this example, on-the-line overfits as it
achieves 0 training and 0.08 testing errors. RCAQ has a larger
training error (0.02), but smaller testing error (0.05).

B. Gaussian mixtures

We perform an experiment by fixing the rate of both RCAQ
and on-the-line with data from a Gaussian mixture. The mean
was uniformly sampled between 0 and 1, and a fixed diagonal
covariance matrix 10−2Id was used, where Id is the identity
matrix with d rows and columns. The dataset sizes were 1, 000
for training and 10, 000 for testing. RCAQ’s train/validation
split was 300/700.

Caution is needed when applying on-the-line at high rates.
On-the-line iterates over the training data and inserts bound-
aries that minimize the training error. Therefore, if the training
error reaches zero, it will stop adding boundaries even if
more rate is available. To avoid this, and to guarantee a fair
comparison, we evaluated on-the-line only for large dataset
sizes (N = 1, 000). Still, RCAQ clearly outperforms on-the-
line on the test loss.

C. Gauging the potential of RCAQ

As shown in previous sections, RCAQ performs compet-
itively with on-the-line, with significantly less complexity.
However, we postulate that RCAQ can perform better for small
training set size.

A major component of RCAQ is the validation step which
is used to find the number of evenly spaced bins for each

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5
0
-1

 lo
ss

 o
n
 t
h
e
 t
e
st

 s
e
t

On the line, training set size = 10

RCAQ, training set size = 10

On the line, training set size = 50

RCAQ, training set size = 50

Fig. 6. Testing loss for on-the-line (blue) and RCAQ (orange) quantizers.
Two training sets of sizes 10 (solid) and 50 (dashed) where used. Results are
shown as a function of the correlation coefficient for a Bivariate Gaussian
distribution. Both methods achieved training loss close to zero, but RCAQ
was slightly higher.

encoder; {bi}di=1. To motivate future work, we performed
experiments to understand if there exists a good set {b∗i }di=1

to begin with, i.e. to asses the potential of RCAQ with respect
to the number of evenly spaced bins. To do this, we forgo the
validation step, fix b1 = b2 = · · · = bd = b, and exhaustively
search over 1 ≤ b ≤ 32 by evaluating on the test set. Clearly,
this setup is not feasible in practice, as we are optimizing over
the test set. However, it does allow us to gauge the potential
performance of RCAQ. On-the-line was trained only with the
training set, hence the results shown are representative of its
performance. Results are shown in Figure 6. Our experiments
indicate that RCAQ can potentially outperform on-the-line.
With few training points, on-the-line is not able to generalize,
as the algorithm works by inserting quantization boundaries
on the coordinates of the training points themselves. This is
reflected in the gap between the losses of RCAQ and on-the-
line, as the potential advantage incurred by RCAQ diminishes
as the training set size increases. Also, RCAQ does not limit
the solution to E1 = E2, which allows more flexibility.

VII. CONCLUSION

In this work we proposed a new quantization algorithm
for distributed classification called Regularized Classification-
Aware Quantization (RCAQ). We provide experiments that
show that RCAQ can generalize to out-of-sample data from
few training points. Through vectorization, an implementation
is provided with computational complexity O(d2R), where d
is the number of encoders and R is the rate at each encoder.
RCAQ is competitive with current baselines such as on-the-
line, but with significantly lower computational complexity, as
it does not loop over the dataset to pick boundaries.

We provide experiments that motivate future work, by
showing that there exist good configurations of evenly-spaced
boundaries that can outperform existing methods. Finding
them, however, is left as an open problem. More experiments
are needed to asses if this scheme will scale to high dimen-
sional datasets.

REFERENCES

[1] Jayadev Acharya, Clément L Canonne, and Himanshu Tyagi. Distributed
simulation and distributed inference. arXiv preprint arXiv:1804.06952,
2018.

[2] Jean-Francois Chamberland and Venugopal V Veeravalli. Wireless
sensors in distributed detection applications. IEEE signal processing
magazine, 24(3):16–25, 2007.

[3] Ilias Diakonikolas, Elena Grigorescu, Jerry Li, Abhiram Natarajan,
Krzysztof Onak, and Ludwig Schmidt. Communication-efficient dis-
tributed learning of discrete distributions. In NIPS, 2017.

[4] Vishal Doshi, Devavrat Shah, Muriel Médard, and Michelle Effros.
Functional compression through graph coloring. IEEE Transactions on
Information Theory, 56(8):3901–3917, 2010.

[5] Yanjun Han, Ayfer Özgür, and Tsachy Weissman. Geometric lower
bounds for distributed parameter estimation under communication con-
straints. In Conference On Learning Theory, pages 3163–3188. PMLR,
2018.

[6] Osama A Hanna, Yahya H Ezzeldin, Tara Sadjadpour, Christina
Fragouli, and Suhas Diggavi. On distributed quantization for classi-
fication. November 2019.

[7] Stuart Lloyd. Least squares quantization in pcm. IEEE transactions on
information theory, 28(2):129–137, 1982.

[8] Maurizio Longo, Tom D Lookabaugh, and Robert M Gray. Quantization
for decentralized hypothesis testing under communication constraints.
IEEE Transactions on Information Theory, 36(2):241–255, 1990.

[9] Zhi-Quan Luo. Universal decentralized estimation in a bandwidth
constrained sensor network. IEEE Transactions on information theory,
51(6):2210–2219, 2005.

[10] D Rebollo-Monedero and B Girod. Design of optimal quantizers for
distributed coding of noisy sources. In Proceedings. (ICASSP ’05). IEEE
International Conference on Acoustics, Speech, and Signal Processing,
2005., volume 5, pages v/1097–v/1100 Vol. 5. ieeexplore.ieee.org, March
2005.

[11] Shai Shalev-Shwartz and Shai Ben-David. Understanding machine
learning: From theory to algorithms. Cambridge university press, 2014.

[12] Aaron B Wagner. On distributed compression of linear functions. IEEE
Transactions on Information Theory, 57(1):79–94, 2010.

[13] Shuang Wang, Yong Fang, and Samuel Cheng. Distributed Source
Coding: Theory and Practice. John Wiley & Sons, March 2017.

	I Introduction
	II Problem Formulation
	III Related Work
	IV Background
	IV-A Distributed Lloyd-Max
	IV-B Generalization and Regularization

	V Methods
	V-A Algorithm
	V-B Optimizing the encoder
	V-C Optimizing the decoder

	VI Experiments
	VI-A Bivariate Gaussians
	VI-B Gaussian mixtures
	VI-C Gauging the potential of RCAQ

	VII Conclusion
	References

